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The Potts model on Bethe lattices: I. General results 

Fulvio Peruggit, Francesco di Libertof and Gabriella MonroyS 
Istituto di Fisica Teorica, Mostra d’oltremare, pad 19, 80125 Napoli, Italy 

Received 12 August 1982 

Abstract. The q-state ferromagnetic Potts model (FPM) and antiferromagnetic Potts model 
(APM) are solved on Bethe lattices for all values of the external magnetic field and 
temperature. The exact expressions of all thermodynamic functions of interest in the FPM 
and APM are calculated. We find the complete phase diagrams for both systems. In the 
FPM there are first-order phase transitions at the critical point for every q > 2. In the 
APM we find second-order phase transitions along a critical line for every q 3 2 .  

1. Introduction 

The Potts model (Potts 1952) has received an increasing theoretical and experimental 
interest in recent years, and at present a great many rigorous and approximate results 
are known. An extended summary of results and bibliography can be found in the 
review article by Wu (1982) and references therein. The model can be studied on 
Bethe lattices, i.e. infinite connected trees whose sites have the same coordination 
number (+ + 1 (see figure 1). Compared with standard lattices, the Bethe lattices are 

Figure 1. Bethe lattice of coordination number U + 1 = 3. 

topological abstractions: however, under certain conditions, exact results on them 
correspond to approximated results on standard lattices. Here, the Bethe lattices are 
fruitfully used to have a deeper insight into the behaviour of the ferromagnetic Potts 
model (FPM) and antiferromagnetic Potts model (APM). 

t Gruppo Nazionale di Struttura della Materia. 
$ Istituto Nazionale di Fisica Nucleare. 

@ 1983 The Institute of Physics 811 



812 FPeruggi, Fdi Liberto and G Monroy 

All methods of solution of Hamiltonian models on Bethe lattices implicitly make 
use of probability measures: in terms of them we can distinguish two distinct 
approaches. In the conventional thermodynamic limit, surface effects are not negli- 
gible, and one finds a probability measure which privileges a ‘central’ site of the lattice 
and distinguishes sites belonging to the various shells surrounding it. In this case the 
system exhibits a special type of phase transitions (see Eggarter (1974), Miiller- 
Hartmann and Zittartz (1974, 1975) for the ferromagnetic and antiferromagnetic 
Ising model; Wang and Wu (1976) for the FPM; Baumgartel and Muller-Hartmann 
(1982) for the random cluster model) which however is not seen in the behaviour of 
standard lattices. If one wants to reproduce their features, one has to find a probability 
measure which is translationally invariant on the Bethe lattice (such are, as a matter 
of fact, the typical probability measures on real lattices). This last choice has also 
been made by Wang and Wu (1976), who found a divergence of the susceptibility at 
a temperature they show to be the Bethe-Peierls temperature TBp on real lattices. 

In this paper we follow the second procedure, and show that TBp individuates one 
of the two spinodal points that the FPM exhibits at zero external field: the system 
undergoes a first-order phase transition at an intermediate critical temperature. 
Moreover, we treat the FPM and APM at non-zero external field, and derive their 
properties in full detail. 

The method we introduce for the solution is based essentially on (a) the use of 
tools of measure theory, and (b) the determination of the free energy. As regards 
(a), it can be proved that a Markovian probability measure, which is rotationally and 
translationally invariant on a Bethe lattice, is completely defined by a small number 
of fundamental probabilities. Then, (b) these probabilities are explicitly determined 
and used to compute the entropy and the internal energy of the system, which give 
the free energy. The mathematical details of (a) and (b) are introduced by Peruggi 
(1983): here we focus mainly on the physical results. Using the analytical expression 
of the free energy, we obtain the thermodynamic functions of interest and study their 
behaviour. In this paper we give a general review of the FPM and APM properties for 
q 3 2 .  Special topics, such as the specific and latent heats, the asymptotic behaviour 
(q + 00, q + 1, q + 0), the case q < 2, and critical exponents, will be discussed in a 
subsequent paper. 

The present method can be easily applied to other related problems such as 
standard or AB Potts-correlated-site/random-bond percolation problems on Bethe 
lattices (Peruggi 1983, Peruggi et a1 1983), and the FPM with quenched site-dilution, 
whose study is actually in progress. 

The outline of the paper is as follows. In § 2 we introduce the general terminology 
and calculate the most important thermal functions of the FPM, whose properties are 
studied and discussed in 0 3. The APM is introduced in § 4, and the proper functions 
are evaluated; their behaviour is deduced and described in § 5 .  Finally, in 9 6 we 
summarise and criticise the results. 

2. The ferromagnetic model thermal functions 

Let us consider a Bethe lattice L, whose sets of sites and bonds will be denoted as V 
and E, respectively (for graph theory terminology we refer to Essam and Fisher 
(1970)). We introduce a regular sequence {T,}:=l of finite trees such that T, c T,,, 
for every index n, and T, = L. We associate a q-state variable vi to each site 
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i E V, and for every tree Tn = (V,,, E,) let all variables interact according to a ferromag- 
netic (K > 0) Potts Hamiltonian: 

Starting from the probability measure g,, induced by the Hamiltonian (1) on T,, we 
can use the standard limit procedures to determine a probability measure g on L. In 
analogy with real lattices we require that 

(i) p is rotationally and one-step translationally invariant on L. 
Following Coniglio (1976), property (i) will be obtained by imposing that 

lim g n ( v u  = 1) = lim gu(v, = 1) 
n-rm n-m 

where U is the common central site of the trees T,, and v is one of its adjacent sites. 
We also consider translational invariance of the lattice itself, i.e. when taking the 
thermodynamic limits we set 

where IEn 1 and 1 V,, I are, respectively, the number of bonds and sites of T,. 
Property (i) of p, together with the property 
(ii) g is one-step Markov on L, 

induced by the Hamiltonian (l), allow us to show that the probability measure of any 
event on L is completely determined by the knowledge of elementary probabilities 
which we denote pr and prs, with r,  s = 1 , .  . . , q. Here pr = p ( v i  = r )  and prs = 
p (vi = slvi = r )  =conditional probability that vi = s, provided that v i  = r,  for every i E V 
and j E V such that ( i j )  E E. Using the equivalence of the spin states r = 2, , . . , q and 
the normalisation conditions 

a a 

it is easy to see that only four elementary probabilities are independent. For our 
purposes we chose 

p1= 1/[1+ (4 - l)cpoCp(cp0)1, 

p21= l/b(cp), P 2 2  = eKcp/b (cp ), ( 5 )  

a(cp>=eK+(q-l)cp, 

G (9) = b (cp)la ( c p ) .  

P11 =eK/a(cp), 

where 

b(cp)= 1 +(eK +q  -2)cp, 
(6) 

Finally, for any choice of H and K the parameter cp can be computed by means of 
relation (2), which in terms of cp is 

(7) 
- H  -U 

cp=e cp ( c p ) .  

The free energy of the system is obtained using its definition: 

ps=p%-F/k (8) 

where k is the Boltzmann constant. Note that, here and in the following, the extensive 
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functions are calculated per site of the lattice. The internal energy is obviously given 
by 

4 

p a  = -HPl -$(U + 1)K P r P r r  (9) 
r = l  

while the entropy can be obtained by direct counting of the possible realisations of 
the system: 

Observe that relation (10) is the same as the entropy evaluated by Kikuchi (1951, 
1970) in the first-order approximation of the cluster variation method. Finally we 
have the magnetisation and the susceptibility of the system: 

JU = -a(ps)/aH = pl, (1 l a )  

where equation (7) has been used to evaluate &p/aH. 
Now, let i and j be two sites of L at a distance 1 (=l(i, j)=number of bonds 

connecting i to j) which are respectively in the states r and s. Then the correlation 
function is given by 

Sijiir, s )  ( s ” ~ r s ” l s ) - ( 6 ” ~ r ) ( s u l s )  

9 4  4 

= p r  ((r IT‘ Is) -ps) 

= 91 (r, s 1 
where x, y, . . . , z are the sites of the unique path on L between i and j, and the q x q 
transfer matrix T is defined as 

(rlTls) = p r S .  (13) 

The evaluation of the elements of T‘ can be reduced to the diagonalisation of a 2 x 2 
matrix, and gives (Peruggi 1983) 

x = C Sij(l,1) 
j e  V 

through equation (14) we recover (1 1 b). 
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3. The ferromagnetic model critical properties 

In this section we study the behaviour of the system by solving relation (7). It can 
be shown that this equation admits at least one solution, and that two other solutions 
appear for certain ranges of H and K. To give the most direct physical interpretation 
we do not consider the values of cp, but the corresponding magnetisation. We also 
use the free energy, for fixed H and K, written as a function of the possible values 
of the magnetisation. This can easily be done using relations (4), ( 5 ) ,  (6 )  to eliminate 
cp and to write all elementary probabilities as functions of pl,  and finally inserting 
these expressions in (8). The solutions of (7), for given H and K, individuate values 
of p1 which are in one-to-one correspondence with maxima, minima, and flexes of 
9 ( p l ;  H, K ) .  In the magnetisation plots of figures 2 and 3 the following code is used. 
Full lines represent stable states corresponding to the deeper relative (= absolute) 
minimum/a of 9. Broken lines represent metastable states corresponding to the upper 
relative minimum (if any) of 9. Dotted lines represent unstable states corresponding 
to the relative maximum (if any) of 9: in this case we have ,y CO, too. Note that the 
points where stable or metastable states coincide with unstable states correspond to 
flexes of 9: these are spinodal points where the susceptibility diverges. The magnetisa- 
tion is plotted as a function of the reduced temperature 8 =e-tK1,  for fixed values of 
the reduced magnetic field h = H / J K  1 (which we introduce to eliminate the temperature 
dependence of H ) .  

i I I 
I i 

e 

Figure 2. Magnetisation versus reduced temperature plots at h = 0, for U = 5 ,  q = 2 ( a )  
and q = 8 (6).  Stable states of the system are represented by full lines, metastable states 
by broken lines, and unstable states by dotted lines. Open circles indicate the points 
where the susceptibility diverges. The curves reported here are typical for the q = 2 and 
q > 2 cases (for every U > 1). 
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I 

- l o 5 3  0 I 

1 

P1 0.5 

0 

e 
Figure 3. Magnetisation versus reduced temperature plots at constant reduced magnetic 
field. The king model, q = 2, is reported in ( a )  for 0 < h <U - 1 and in ( 6 )  for -(U - 1) < h < 
0. The Potts model, q > 2 ,  is given in ( c )  for O <  h < h*, and in (d )  for 6< h < 0. The 
same code as in figure 2 is used. The actual values used for the plots are U = 5,  q = 2, 
lh l=l  ( a ) , ( b ) ; q = 8 ,  h = O , l ( c ) ; q = 8 , h = - l ( d ) .  



The Potts model on Bethe lattices 817 

-1 41 

rrf' 

-1.2 I I  

rrr 

8 :0.800 

w - O ' D  
1 -1.1 U 

0 1 0 1 0 1 
P I  P1 

Figure 4. Free energy versus magnetisation plots in the king model at zero external field. 
The diagrams are drawn for U = 5 and the values of 0 indicated. The origin of the vertical 
axis is conveniently shifted and the scale expanded. An arrow indicates the position of 
the flex of 09.  These figures are chosen as representative of the cases q = 2;  U > 1; 6' < 8, 

-1.51 -1.41 

P1 

(01, e = ec (b ) ,  e > ec ( c ) .  

Let us consider now the single cases in detail. We start from the simplest case 
h = 0. For q = 2 we have the well known Ising model (see figure 2(a)) for which the 
free energy versus magnetisation plots are given in figure 4. Note that below the 
critical temperature 8, = (a - l)/(a + 1) the two minima of 9 are always equal, giving 
two coexisting stable states which can be reached in the limits h -* O+ and h -* 0-. For 
4 > 2  we have a substantially different situation (see figures 2(b) -5) .  Now, the two 
minima of 9 which appear for 8 < 82 are not equal, so metastable states arise. We 
have equality only at the critical temperature 

l l / (q  - 2) (17) (u-l)/(u+l) - 0, = [(q - 1) 

where the system undergoes a first-order phase transition with a magnetisation jump 
from p1 = l / q  to p1 = (q - l ) /q .  According to the order parameter definition for the 
Potts model 

(18) m = (4A - l) /(q - 1) 
this corresponds to a jump from m = 0 to m = (q - 2 ) / ( q  - 1). At zero external field 
we also find two spinodal points which represent respectively the boundary of the 
metastable disordered (3 supercooled) phase at < e,, and the boundary of the 
metastable ordered (=superheated) phase at & > 8,. 

The most interesting situations arise for sufficiently small h # 0, and low tem- 
peratures. The behaviour of the Ising model is plotted in figures 3(a) and 3 ( b )  for 
h > O  and h < O  respectively. Note the symmetry by change of sign of h, and the 
spinodal points at temperatures 8l(+lh 1) = &(-lh I), which go to 8, for h + 0. For q > 2 
the symmetry breaks up and we have the behaviour represented in figure 3 ( c )  (h  >0) 
and 3(d)  (h  < 0). For sufficiently small h > 0 we find three spinodal points and one 
critical temperature such that 8; ( h )  < &(h)  < e,@) < ez(h),  and 8; (0) = &(O) = el, 
&(O) = e,, &(O) = Oz. The reduced temperature 8; ( h )  is a decreasing function which 
goes to 0 for h -* (T - 1, while O1(h), 8,(h), and &(h) are increasing functions which 
go to the common limit 8* for h + h * > 0. For h < 0 and sufficiently small Ih I we find 
one spinodal point and two critical temperatures such that 8 : ( h )  < 8,(h)  < &(h),  and 
OL(0) = 0, &(O) = e,, &(O) = 82. The reduced temperature &(h)  is an increasing function 
which goes to 0 for h + -(a - 1); while 8L(h) and 8,(h) are, respectively, decreasing 
and increasing functions which go to the common limit 6 for h -* 6< 0. Finally, we 
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Figure 5. Free energy versus magnetisation plots in 
the Potts model at zero external field. The diagrams 
are drawn for 0 = 5 ,  q = 3 ,  and the values of 8 
indicated. The origin of the vertical axis is con- 
veniently shifted and the scale expanded. Arrows 
indicate the position of the flexes of 09.  These 
figures are chosen as representative of the cases 
q > 2 ;  0>1; e<el ( a ) ,  8 = 8 1  ( b ) ,  81<8<8, ( c ) ,  
e = e, ( d ) ,  8, < 8 < 8 2  (e), e = 8 2  U), 8 > 82 (g). 

note that the magnetisation jump at e:&) and &(h) is a decreasing function of the 
temperature which goes to 1 for 8 -* 0 and goes to 0 for 8 + 8 * .  This means that we 
have first-order transitions all along the phase coexistence line h J 8 )  (=the function 
whose inverse is the double-valued function with branches 8: ( h )  and 8,(h)),  except 
at 8*, h* where the system undergoes a second-order phase transition. For 8 > 8* 
the functions 4 and ,y are continuous and phase transitions disappear. The critical 
line is given by 

hc(8) = ( 2  In 8)- ' { (c  - 1) ln(q - 1) - ((T + 1) ln[l + (q - 2)8]} 

e * = 2 ~ - ( q - 2 ) + { ( q - 2 ) 2 + 4 ( q - 1 ) [ ( ~ + l ) / ( ~ - 1 ) ]  2 } 1/2 JJ -1  I 

(19) 

(20) 

and its terminal point is situated at the temperature 

Remark that the king model is recovered for 4 + 2, since one has h J 8 )  = 0, while (17) 
and (20) give 8, = 8* = (U - 1 ) / ( ( ~  + 1). 

All the preceding results can be fruitfully regarded as phase diagrams in the h, 8 
plane: see figure 6, where full lines represent phase coexistence lines, while spinodal 
lines are broken. Observe that the Ising curves (figure 6 ( a ) )  and the Potts curves 
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h 

- 
0 

-4 

h 

Figure 6. Phase diagrams of the FPM in the h, 8 plane. The curves are drawn for U = 5 ,  
and q = 2 ( a ) ,  q = 3 ( b ) ,  (cj, q = 8 (d ) .  Diagram (c) gives the details enclosed in the square 
in ( b ) .  The spinodal curves (broken lines) correspond to virtual first-order transitions 
(with diverging susceptibility) from a metastable state to the stable state of the system. 
To every point within the spinodal lines there correspond three (respectively unstable, 
metastable, stable) states of the system. The role of stable and metastable states inter- 
changes crossing the phase coexistence line (full line), where they have the same free 
energy and the system undergoes a first-order transition. A second-order transition appears 
only at the point h*,  8* where the spinodal curves and the phase coexistence line join 
together. Note that h* is an increasing function of q. 

(figures 6(b,c ,d))  are the same except for scale factors and a deformation due to the 
symmetry breaking between 'up' ( 5 1 )  and 'down' (=all other) spin states. One 
relevant feature of the Potts case (q > 2) is the temperature range 0 < 8 < 8, where 
stable states appear which have magnetisation 'opposite' to the field. 
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Let us now review some known results and compare them with the present solution. 
Wang and Wu (1976) found the Bethe-Peierls temperature T B p  on real lattices and 
demonstrated that the zero-field susceptibility on Bethe lattices diverges at TBP. 

Southern and Thorpe (1979) solved a dilute random-bond FPM on Bethe lattices. 
They use the divergence of the susceptibility to find the phase boundary in the 
concentration-temperature plane, and obtain, at zero dilution, the same value for 
TBp. On the other hand, mean field theory (MFT) of the FPM gives first-order transitions 
for every 4 > 2  (Kihara er al. 1954, Mittag and Stephen 1974). However, we know 
that MFT and the Bethe-Peierls approximation (which is equivalent to the treatment 
of Bethe lattices with translationally invariant probability measures) belong to the 
same class of approximations (Domb 1960), the latter being an improvement of the 
former. Therefore, as pointed out by de Magalhies and Tsallis (1981) (see also Wu 
1982), the above results seem to be in contradiction. Taking into account our results, 
the contradiction disappears, since we have shown that d1 = (a - l)/(a + q  - 1) = T B p  

is a spinodal point, while the actual critical point and the right classification of the 
transition must be found by looking at the minima of the free energy. Our method 
is in excellent agreement with MFT, giving first-order transitions for 4 >2,  and the 
same jump of the order parameter at the critical temperature. An improvement can 
be seen in the value of B,, because we have A& = 8, (MFT) - 8, (Bethe lattice) > 0 (see 
below for numerical values) with Ad, + 0 for a -* 00 and/or 4+00. 

Finally, we consider the behaviour of the FPM on regular d-dimensional lattices. 
Since the effective dimensionality of the Bethe lattices appears to be d = co (see e.g. 
Baxter 1982) we expect that our results are asymptotically exact for high-dimensional 
standard lattices. In practice we have a good agreement starting from d = 3 .  For the 
three-state FPM on the simple cubic lattice, high- and low-temperature series develop- 
ments (Straley 1974) suggest singularities respectively at 81 = 0.575 and O2 = 0.586, 
while Monte Carlo (MC) renormalisation group results (Blote and Swendsen 1979) 
and standard MC techniques (Knak Jensen and Mouritsen 1979, Herrmann 1979) give 
8, = 0.577. We can simulate this model by setting 4 = 3 a n d a  = 5 :  MFT gives 8, = 0.630, 
while our results are 81 = 0.571, e,= 0.587, = 0.589. The four-state FPM on the 
d = 4  hypercubic lattice was studied by means of series expansions by Ditzian and 
Kadanoff (1979) who found =0.621*0.005,8,=0.635*0.005, d 2 =  0.647*0.010. 
Correspondingly, for 4 = 4 and u = 7, ~m gives 8, = 0.662, while our results are 
81 = 0.600, 8, = 0.640, 8 2  = 0.645. Finally, note that the hysteresis loop limited by B1 
and 82, and spurious transitions from the metastable phases to the stable ones, were 
observed in MC simulations, too (Blote and Swendsen 1979, Knak Jensen and Mourit- 
sen 1979). 

4. The antiferromagnetic model thermal functions 

The procedure introduced in § 2 cannot be generalised to the APM simply by setting 
K < 0 in all equations. This can be seen by considering the antiferromagnetic Ising 
model in its ground state, where the minimal energy and the maximum order realise 
if every ‘up’ spin is surrounded by ‘down’ spins, and vice versa. This state can be 
described by a probability measure p which, instead of property (i), must satisfy the 
following one: 

In order to construct p we proceed as follows. For every T, let us denote by V‘, 
(iii) CL is rotationally and two-step translationally invariant on L.  
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( V z )  the set of sites in V,, whose distance 1 2 0  from the central site U is an even 
(odd) number. (In the limit n +CO this induces a partitioning of Vin two sublattices 
V' and V" such that for every i E Ve(i E V") its adjacent sites belong to V" (V').) 
Moreover, let us introduce the following antiferromagnetic ( K  < 0) Potts Hamiltonian 
with staggered field: 

-@fn sK a",,,, + ( H + T )  1 & , i + ( H - T )  1 aVci (21) 
W E E ,  i C c  ICE 

which generates a probability measure p,, on T,,. In the limit n + 00 property (iii) of 
CL will be obtained by requiring that 

lim p, , (vu = 1) = lim pn(v ,  = 1) 
n-m "-a) 

where l (u ,  w )  = 2; while property (ii) is induced by Hamiltonian (21). We need now 
eight independent elementary probabilities: p ; ,  pyl, p h ,  p ; ~ ,  p ? ,  pY1, pi l ,  p i 2 ,  where 
p :  = p (vi  = r ; i E V"), p:s = p (vi = s lvi = r ; i E V"), x is e or 0, and I (i, j )  = 1. The 'even' 
probabilities are given by 

while the 'odd' probabilities are obtained by interchange of cp and 6 .  Here cp is a 
solution of the equation 

(24) cp = e - (H+~) (p  U (e-(H-~)cp U (cp )) 

which is implied by (22), and 

(25) 
(H--7) -U 4 =4(cp)=e- cp (cp). 

The actual free energy, internal energy and entropy are given by 

where the 'even' ('odd') component functions have the same functional form of (8),  
(9), (lo), but depend on 'even' ('odd') probabilities and H + T  (H -7). The relevant 
physical properties of the system will be found, in the most natural way, considering 
the staggered magnetisation and susceptibility: 

where 

(1 *uA")*A"(l f u A Y )  
1 - u 2 ~ x ~ y  

x: = p t ( l - p i )  9 

A" -P$I,  

and the pair x ,  y stands for the apices e, o or 0, e. We also consider the 'mixed' 
susceptibility 

Xm = aAs/aH = $(x: - X ?  (29) 
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and the standard functions 

Finally, the T + 0 limit brings us back to our original model, as can be seen by 
noting that Hamiltonian (21) becomes equal to (1) with K < 0. However, the system 
will exhibit new properties, since relation (7) is a particular case of the equation we 
actually use to compute cp : 

(31) - H - U  - H - u  
cp = e  cp (e cp (cp)) 

which we obtain, together with the auxiliary relation 
4 =G(cp)=e-H-u cp (cp), 

respectively from (24) and (25). 

5. The antiferromagnetic model critical properties 

We now look for the solutions of equation (31). It is easy to see that relation (7) for 
K < 0 admits one and only one solution (PP for any choice of H and K.  This means 
that (31) always admits the solution cpp with associate value $(cpp) = cpp. It can be shown 
that, for sufficiently low temperatures, and certain ranges of H, equation (31) admits 
two other solutions cpk < c p p  <cp: such that 

qk #G(cpk)=pL cp: # G(cpL) = (Pa. (33) 
Let us consider the mathematical and physical implications of the solutions above. 
Since cpp gives 

it corresponds to a one-step translationally invariant probability measure. Correspond- 
ingly equations (26) and (30) reduce respectively to @), (9), (lo), (11); the staggered 
magnetisation and the mixed susceptibility are identically zero; while (27b) becomes 

(35) x s  =Piu -P1)[1 - (P11 -P21)1/[1 + d P l l  -P21)1 

which is recovered using (14) and the generalised fluctuation relation: 

Finally, since the order parameter of our APM is m = 2 1 4 ,  we see that m (qP) = 0, i.e. 
cpp describes a disordered state of the system. Now let us limit our considerations to 
the set of pairs H, K such that equation (31) admits three distinct solutions. The 
inequalities in (33) imply that 'even' and 'odd' probabilities corresponding to cpk ( v i )  
are not equal; while the equalities mean that cpk and cppX differ only because they 
interchange the values of 'even' and 'odd' probabilities. In terms of probability 
measures we say that there are two two-step translationally invariant probability 
measures: each of them gives the other by means of one-step translations. Since we 
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have 

we see that the system always prefers the ordered states, represented by cpk and cpX, 
to the corresponding disordered state. Therefore pk and cpk describe the antiferro- 
magnetic phase of the system, which chooses one of the two possible orderings 
according to the initial conditions ( ~ - 0 ~  or T+O-). There is a set of pairs H, K 
such that = cpp = cp: : this is a critical line &(h) in the h, 8 plane (see figure 7) which 
separates the antiferromagnetic phase found above from the paramagnetic phase (the 
zone where only cpp exists). Crossing this line at non-zero temperature, the system 
always undergoes second-order phase transitions. Indeed, A, goes to zero con- 
tinuously approaching the critical line from within, while ,ys diverges all along e&). 

m (cp X )  = m (cp 3 > 0, Wcp X )  = S(cp 2 < 9 ( c p P ) ,  (37) 

q .IO 

h 6 

3 

I 
Figure 7. Phase diagrams of the APM in the h, 6 plane. The curves are drawn for U = 5 
and the values of q indicated: they are representative of all Bethe lattices with U > 1. The 
critical lines separate the inner antiferromagnetic ordered phase (staggered magnetisation 
As # 0) from the paramagnetic phase (Atl, = 0). Along these lines the system undergoes 
second-order phase transitions, because the staggered magnetisation goes to zero con- 
tinuously, and the staggered susceptibility diverges. Note the upward shift of the critical 
lines for increasing q :  they intersect the 0 axis at non-zero temperature only for q < U + 1. 

Let us consider now the properties of the antiferromagnetic phase. The lower and 
upper branches, hl(6) and hu(8) ,  of the critical line start from the h axis and join at 
hbshl(8b) = hu(8b), where 8 b  is the upper bound to the temperatures such that the 
antiferromagnetic ordering is possible. The lower branch intersects the 8 axis at the 
temperature Bi = 8,(0). We have 
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For every fixed temperature 0 < e  lASl =&((pa) = -AS((p2) increases from 0 at 
h ( ( 8 )  to its maximum value at h,(O), then decreasing to 0 at h,(8). Correspondingly 
/xml + CO for h +(e)' and for h -* h,(8)-, while the condition ,ym = 0 defines the line 
of maximum antiferromagnetic ordering (LMO): 

h,(e) = :(U + 1) + (2 In e)- ' [ (u - 1) ln(q - 1) - (U + 1) ln(8 +q -211 (39) 

which ends on the critical line at the point hb. In the antiferromagnetic king model 
this line is the symmetry axis of the critical line, since we have h,(8)=0, &=ei ,  
hr(8)  = -h,(8). For 4 > 2  the LMO follows the upward shift of the antiferromagnetic 
phase (see figure 7), since h,(8) > 0. All along the LMO the ordered states can be 
seen as redistributions of the spin states present in the corresponding (unstable) 
disordered state, since we find &((cpa)=A((pL)=M((pp) .  For every point in the 
antiferromagnetic phase not lying on h,(e) this is not true, because &((pa) = A t ( ( p L )  > 
A(qP). These results imply the cusp in the magnetisation and the jump in the 
susceptibility which we observe crossing the critical line at every temperature 0 < 8 < 8b.  
The jump in ,y is a decreasing function of the temperature which goes to 0 for 8 + 8b .  

Indeed, crossing the critical line at Ob, hb, the functions A and ,y are found to be 
continuous, the singularity being displayed by a cusp in x. 

At zero temperature we find first-order transitions. The paramagnetic phase for 
h < hl(0)  and h > h,(O) is characterised respectively by A = 0 and by A = 1. For every 
h such that hr(0)  < h < h,(O) the system disposes in its best ordered state (BOS). In 
the BOS we find a sublattice completely filled by the spin state 1, while the remaining 
spin states distribute randomly on the other sublattice. The entropy of the BOS is 
Y = ( k / 2 )  ln(q - l), which is non-zero for q > 21. The state of the system at h = 0, 
8 = 0 can be obtained by setting H = 0, K = -CO in equation (31). We find the BOS 

for q=2;  a state characterised by incomplete ordering (i.e. such that O<m < 1, see 
figure 8) for 2 < q < U  + 1; and a paramagnetic state described by (pp = 1 for q * U  + 1. 

Figure 8. Standard (full line) and staggered (broken line) magnetisations of the APM at 
h = 0 for 2 < 9 < U + 1. Note the presence of the spontaneous magnetisation below Bi, the 
cusp of 1 at Bi, and the incomplete ordering 1,<0.5 at 0 = O .  Only the staggered 
magnetisation corresponding to rpX has been plotted: the other ordering gives a line 
symmetric to this one with respect to the 8 axis. The cases ~7 = 5 ,  9 = 3 and 9 = 5 ,  are 
represented respectively in ( a )  and (6). 

Remark that, since every pair H Z *CO, K =-CO is mapped into h =0, 8 = 0, we can 
find other states in this point, if it is reached with a behaviour of the type (a) 
h = constant/ln 8. For q = 2 this result is not relevant because only the solution (pp, 

i.e. the unstable state, is modified going to h = 0, 8 = 0 along (a)-lines (the same 

i This is a general property of the APM on bipartite lattices (i.e. formed by two sublattices with the properties 
of V e  and V" in the Bethe lattices). See e.g. Berker and Kadanoff (1980). 
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happens in the FPM for every q ) .  However, for q >2, (a)-lines give rise to stable 
states, all of which are found at the point h = 0, 8 = 0. As a matter of fact, note that 
along hl (8 ) ,  that is an (a)-line for q > 2, q #U + 1, and small 8, we reach a state 
described by q L  = qp = cp; = (a - l)/(q - 2). 

Finally, let us note that in the APM, for 2<q  < U +  1 and h =0, the condition 
h,(8) > O  implies Jcc(qL) =Ju(q;)  >Jcc(qp) = l /q  for every 8 < Bi: the system exhibits 
a spontaneous magnetisation (figure 8). 

The APM has already been treated on planar lattices (see e.g. Schick and Griffiths 
1977, Grest and Banavar 1981, Nightingale and Schick 1982), and on d > 2  lattices 
with which we compare the present solution. The antiferromagnetic Ising model on 
Bethe lattices was solved by Katsura and Takizawa (1974), who found the critical line 
and the associated cusp in the magnetisation. They also evaluated the zero-field 
standard and staggered susceptibilities and showed that at 8i the former has a cusp, 
while the latter diverges. All these results coincide with ours for = 2. The zero-field 
three-state Potts model has been studied by Oguchi et a1 (1982) with an extension 
of the effective Hamiltonian method. For antiferromagnetic interactions they find a 
second-order phase transition at a temperature equal to our Oi for q = 3 (the structure 
of the ordered phase is the same as in the present solution). Banavar et a1 (1980) 
made MC simulations of the three- and four-state zero-field APM on the simple cubic 
lattice. In both cases they find a second-order transition to an antiferromagnetic 
ordered phase, which is characterised by incomplete ordering at zero temperature. 
The relative critical temperatures seem to be in agreement with our results for (T = 5 ,  
i.e. ei = 0.500 for q = 3 ,  and Bi = 0.333 for q = 4. They also find that for q = 5 the 
system is always in a paramagnetic state, while we find an ordered phase below 
0, = 0.167: in our model the antiferromagnetic phase at h = 0, 8 # 0 disappears for 
4 2 6 .  The metastable ‘plastic crystal’ phase, observed by Banavar et a1 (1980) at 
temperatures below Oi, cannot @e observed in our case because it is removed by the 
limits 7 + 0‘. However, it can appear if we relax this condition: let us set T = 0 and 
cross the critical line by suddenly quenching the system. For q > 2  a mixing of the 
two possible orderings can be realised without increase of the internal energy and 
entropy. The system subdivides in domains (each one described by p i  or p i )  whose 
collective properties can give rise to the above-mentioned phase. 

6. Conclusions 

We have introduced a formalism which has allowed us to solve the Potts model on 
Bethe lattices. Moreover, by means of it we have a good reproduction (and probably 
good foresight) of the behaviour of this model on real lattices, as can be seen by 
noting that the well known main properties of the system are recovered. 

One of the main features of the q-state FPM is the existence of a value q,, depending 
on the dimensionality d, such that the system undergoes a second-order phase transition 
at the critical point for q dq, ,  and a first-order one for q >qc.  It is known that 
qJ2) = 4 , 2  < q,(3) < 3 ,  qJ4) = 2. In our case qc = 2, which agrees with mean field theory 
of the FPM and with results obtained on standard lattices with d L 3 .  

At zero external field we find two spinodal points on the two sides of the critical 
point (all of them coincide for q = 2). We suggest that their possible existence on 
standard lattices could be responsible for the failures of real space renormalisation 
groups to find first-order transitions in the FPM (see e.g. Burkhardt et a1 1976, Dasgupta 
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1977, den Nijs and Knops 1978, den Nijs 1979a, b). In other words, we think that 
the renormalisation transformations can be more sensitive to the long-range correla- 
tions associated with the spinodal points rather than to the critical point. The first-order 
phase transitions could be seen if the spinodal points are deleted: this can be obtained 
by creating local disorder, e.g. introducing vacancies in the system. This interpretation 
can explain why only recently Nienhuis et al (1979, 1980a, b, 1981) and Andelman 
and Berker (198 1) have found first-order transitions applying the Niemijer-van 
Leeuwen RG and the Migdal-Kadanoff RG to a lattice-gas diluted FPM. 

Finally, we used our h # O  results to draw the phase diagram of the FPM, which 
explains the differences between the Ising and Potts models at h = 0, and shows their 
similarity in the larger context h # 0. 

As regards the APM, not much information is known about its behaviour on real 
lattices. Rescaling arguments support the existence of a cut-off value q o ( d )  such that 
for q >qo there is no ordered phase at h = 0 (Berker and Kadanoff 1980). It is 
expected (see also Wu 1982) that, for fixed dimensionality d,  the critical temperature 
BJh ; q )  at h = 0 decreases from &(O; 0) = 1 to BJO; q o )  > 0, and is zero for every q > qo. 

On Bethe lattices (d = CO) we find &(O; q )  = (a -q  + l)/(a + 1) and qo =a + 1, i.e. 
the jump is missing and 40 depends on the coordination number. However, note that 
we find a line of critical points (corresponding to second-order phase transitions for 
every q 3 2) in the h, B plane, not an isolated singularity at h = 0: the ordered phase 
exists for q > 4 0 ,  too, but it appears at h > O .  

In conclusion, let us remark that our results in the APM can be used as a guideline 
only for bipartite lattices. Introducing the symtnetric APM (with fields H, 2 0  actink 
on each state r = 1, . . . , q )  and/or more complicated staggerings, one should look for 
n-step translationally invariant probability measures and study their properties.? 
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